Regression Coefficient for Finite Population in case of Probability Proportional to Size without Replacement (PPSWOR)

Agarwal, Bhawna ${ }^{1}$ and Sumer Singh ${ }^{2}$
${ }^{1}$ Amity College of Commerce and Finance Amity University, Noida
${ }^{2}$ Vice-Chancellor, Sangam University, Bhilwara

Abstract

Estimation of population through samples is done in each and every field in market. For that, it is mandatory for a surveyor to understand that which kind of sampling methodology is to be considered and Why? Generally, when any researcher considers about random sampling, he considers SRSWR, SRSWOR, Startified sampling, Multi-stage sampling, Cluster sampling etc. But in few cases, it is required to consider Probability proportional to size sampling technique. So far, statisticians developed estimators and estimates for population mean, total, standard deviation, standard error etc. under Probability proportional to size sampling technique. Few researches have also been done for correlation coefficient but so far no proper attempt has been made to estimate regression coefficient. In this paper, the author has developed the estimator of regression coefficient and its bias.

Keywords: Regression Coefficient, Probability Proportional to Size without Replacement (PPSWOR), Finite Population

1. NARRATION OF THE PROBLEM:

As discussed earlier also, no proper attempt has been made to study the regression coefficient for probability proportional to size without replacement (PPSWOR) sampling. So far, Gupta and Singh(1989) derived usual correlation coefficient in PPSWR sampling. In this paper, the authors are proposing the estimator and bias of regression coefficient where Y is a dependent variable and X is an independent variable. The expressions for bias, variance and estimator of the variance have been worked out for the regression coefficient in case of PPSWOR when the units in the sample are selected with unequal initial probabilities $\left\{\mathrm{P}_{\mathrm{i}}, \sum \mathrm{P}_{\mathrm{i}}=1\right\}$ and the probability of drawing a specified unit of the population at a given draw changes with the draw.

Let the units in the given finite population be denoted by $U_{1}, U_{2}, \ldots, U_{N}$ and a sample of size n is taken with PPSWOR sampling and the measurements on variable X and Y are recorded. In what follows, we define the following:
$t_{i}=\left\{\begin{array}{c}1 \text { if } U_{i} \text { is included in the sample } \\ 0 \text { otherwise }\end{array}\right.$

Obviously, $\mathrm{E}\left(\mathrm{t}_{\mathrm{i}}\right)=\mathrm{p}_{\mathrm{i}}$ (the prob. that U_{i} is selected) so that $\mathrm{E}\left(\mathrm{t}_{\mathrm{i}}^{2}\right)=\mathrm{E}\left(\mathrm{t}_{\mathrm{i}}^{3}\right)=\mathrm{E}\left(\mathrm{t}_{\mathrm{i}}^{4}\right)=\mathrm{p}_{\mathrm{i}}$
$E\left(t_{i} t_{j}\right)=p_{i j}$ (the prob. that U_{i} and U_{j} both occur in the sample);
$E\left(t_{i} t_{j} t_{k}\right)=p_{i j k}$ (the prob. that U_{i}, U_{j} and U_{k} occur in the sample) and
$E\left(t_{i} t_{j} t_{k} t_{l}\right)=p_{i j k l}$ (the prob. that U_{i}, U_{j}, U_{k} and U_{1} are included in the sample). (1)

We shall also observe the following notations throughout the paper:

```
    \(\sum_{1}\) for \(\sum_{i=1}^{N} ; \sum_{2}\) for \(\sum_{i \neq j=1}^{N} ; \quad \sum_{3}\) for \(\sum_{i \neq j \neq k=1}^{N} ;\)
\(\sum_{4}\) for \(\sum_{\mathrm{i} \neq \mathrm{j} \neq \mathrm{k} \neq \mathrm{l}=1}^{\mathrm{N}}\)
```


2. REGRESSION COEFFICIENT

The regression coefficient of Y on X is given by

$$
b_{Y X}=r \frac{\sigma_{Y}}{\sigma_{X}}=
$$

$$
\begin{equation*}
\frac{\sum X Y-\frac{1}{n}\left(\sum X\right)\left(\sum Y\right)}{\sum X^{2}-\frac{1}{n}\left(\sum X\right)^{2}} \tag{3}
\end{equation*}
$$

For PPSWOR, the estimator of above mentioned regression coefficient can be considered as

$$
\begin{equation*}
\hat{b}_{Y X}=\frac{\theta_{1}}{\theta_{2}} \tag{4}
\end{equation*}
$$

where $\hat{\theta}_{1}=\sum_{1} X_{i} Y_{i} \mathrm{t}_{\mathrm{i}}-\frac{1}{\mathrm{n}}\left(\sum_{1} \mathrm{X}_{\mathrm{i}} \mathrm{t}_{\mathrm{i}}\right)\left(\sum_{1} \mathrm{Y}_{\mathrm{i}} \mathrm{t}_{\mathrm{i}}\right)$

$$
\hat{\theta}_{2}=\sum_{1} \mathrm{X}_{\mathrm{i}}^{2} \mathrm{t}_{\mathrm{i}}-\frac{1}{\mathrm{n}}\left(\sum_{1} \mathrm{X}_{\mathrm{i}} \mathrm{t}_{\mathrm{i}}\right)\left(\sum_{1} \mathrm{X}_{\mathrm{i}} \mathrm{t}_{\mathrm{i}}\right)
$$

Let $\mathrm{E}\left(\hat{\theta}_{1}\right)=\theta_{1}$, this implies $\hat{\theta}_{1}=\theta_{1}+\varepsilon_{1}$ and $\mathrm{E}\left(\hat{\theta}_{2}\right)=$ θ_{2}, which implies $\hat{\theta}_{2}=\theta_{2}+\varepsilon_{2}$.

Therefore, $\mathrm{E}\left(\varepsilon_{1}\right)=0, \quad \mathrm{E}\left(\varepsilon_{2}\right)=0, \quad \mathrm{~V}\left(\varepsilon_{1}\right)=\mathrm{E}\left(\varepsilon_{1}^{2}\right) \quad$, $\mathrm{V}\left(\varepsilon_{2}\right)=\mathrm{E}\left(\varepsilon_{2}^{2}\right), \operatorname{Cov}\left(\varepsilon_{1}, \varepsilon_{2}\right)=\mathrm{E}\left(\varepsilon_{1} \varepsilon_{2}\right)$

Lemma 1:

The expected value of $\hat{\theta}_{1}$ is given by $E\left(\hat{\theta}_{1}\right)=$ $\frac{1}{n}\left((n-1) \sum_{1} X_{i} Y_{i} p_{i}-\sum_{2} X_{i} Y_{j} p_{i j}\right)$

Proof: We have

$$
\begin{aligned}
& \mathrm{E}\left(\hat{\theta}_{1}\right)=\mathrm{E}\left[\sum_{1} \mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}} \mathrm{t}_{\mathrm{i}}-\frac{1}{\mathrm{n}}\left(\sum_{1} \mathrm{X}_{\mathrm{i}} \mathrm{t}_{\mathrm{i}}\right)\left(\sum_{1} \mathrm{Y}_{\mathrm{i}} \mathrm{t}_{\mathrm{i}}\right)\right] \\
& =\mathrm{E}\left[\sum_{1} \mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}} \mathrm{t}_{\mathrm{i}}-\frac{1}{\mathrm{n}}\left(\sum_{1} \mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}} \mathrm{t}_{\mathrm{i}}^{2}+\sum_{2} \mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{j}} \mathrm{t}_{\mathrm{i}} \mathrm{t}_{\mathrm{j}}\right)\right] \\
& \quad=\mathrm{E}\left[\sum_{1} \mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}-\frac{1}{\mathrm{n}}\left(\sum_{1} \mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}+\sum_{2} \mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{j}} \mathrm{p}_{\mathrm{ij}}\right)\right] \\
& \quad=\frac{1}{\mathrm{n}}\left((\mathrm{n}-1) \sum_{1} \mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}-\sum_{2} \mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{j}} \mathrm{p}_{\mathrm{ij}}\right)
\end{aligned}
$$

Corollary 1:

$E\left(\hat{\theta}_{2}\right)=\frac{1}{n}\left((n-1) \sum_{2} X_{i}^{2} p_{i}-\sum_{2} X_{i} X_{j} p_{i j}\right)$
Lemma 2: The variance of ε_{1} is given by

Proof: We have $V\left(\varepsilon_{1}\right)=E\left(\varepsilon_{1}^{2}\right)$

$$
\begin{aligned}
& =\mathrm{E}\left(\sum_{1} \mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}} \mathrm{t}_{\mathrm{i}}-\frac{1}{\mathrm{n}}\left(\sum_{1} \mathrm{X}_{\mathrm{i}} \mathrm{t}_{\mathrm{i}}\right)\left(\sum_{1} \mathrm{Y}_{\mathrm{i}} \mathrm{t}_{\mathrm{i}}\right)\right)^{2}-\theta_{1}^{2} \\
& =\mathrm{E}\left(\sum_{1} \mathrm{X}_{\mathrm{i}}^{2} \mathrm{Y}_{\mathrm{i}}^{2} \mathrm{t}_{\mathrm{i}}^{2}+\sum_{2} \mathrm{X}_{\mathrm{i}} \mathrm{X}_{\mathrm{j}} \mathrm{Y}_{\mathrm{i}} \mathrm{Y}_{\mathrm{j}} \mathrm{t}_{\mathrm{i}} \mathrm{t}_{\mathrm{j}}+\frac{1}{\mathrm{n}^{2}}\left\{\sum_{1} \mathrm{X}_{\mathrm{i}}^{2} \mathrm{Y}_{\mathrm{i}}^{2} \mathrm{t}_{\mathrm{i}}^{4}+\right.\right.
\end{aligned}
$$

$$
\sum_{2} X_{i}^{2} Y_{i}^{2} \mathrm{t}_{\mathrm{i}}^{2} \mathrm{t}_{\mathrm{j}}^{2}+2 \sum_{2} \mathrm{X}_{\mathrm{i}} \mathrm{X}_{\mathrm{j}} \mathrm{Y}_{\mathrm{i}}^{2} \mathrm{t}_{\mathrm{i}}^{3} \mathrm{t}_{\mathrm{j}}+\sum_{3} \mathrm{X}_{\mathrm{j}} \mathrm{X}_{\mathrm{k}} \mathrm{Y}_{\mathrm{i}}^{2} \mathrm{t}_{\mathrm{k}} \mathrm{t}_{\mathrm{j}} \mathrm{t}_{\mathrm{i}}^{2}+
$$

$$
2 \sum_{2} X_{\mathrm{i}}^{2} \mathrm{Y}_{\mathrm{i}} \mathrm{Y}_{\mathrm{j}} \mathrm{t}_{\mathrm{i}}^{3} \mathrm{t}_{\mathrm{j}}+\sum_{3} \mathrm{X}_{\mathrm{k}}^{2} \mathrm{Y}_{\mathrm{i}} \mathrm{Y}_{\mathrm{j}} \mathrm{t}_{\mathrm{k}}^{2} \mathrm{t}_{\mathrm{i}} \mathrm{t}_{\mathrm{j}}+4 \sum_{3} \mathrm{X}_{\mathrm{i}} \mathrm{X}_{\mathrm{k}} \mathrm{Y}_{\mathrm{i}} \mathrm{Y}_{\mathrm{j}} \mathrm{t}_{\mathrm{i}}^{2} \mathrm{t}_{\mathrm{j}} \mathrm{t}_{\mathrm{k}}+
$$

$$
\left.2 \sum_{2} X_{i} X_{j} Y_{\mathrm{i}} Y_{\mathrm{j}} \mathrm{t}_{\mathrm{i}}^{2} \mathrm{t}_{\mathrm{j}}^{2}+\sum_{4} \mathrm{X}_{\mathrm{k}} \mathrm{X}_{\mathrm{l}} Y_{\mathrm{i}} Y_{\mathrm{j}} \mathrm{t}_{\mathrm{i}} \mathrm{t}_{\mathrm{j}} \mathrm{t}_{\mathrm{k}} \mathrm{t}_{\mathrm{l}}\right\}-\frac{2}{\mathrm{~N}}\left\{\sum_{1} X_{\mathrm{i}}^{2} Y_{\mathrm{i}}^{2} \mathrm{t}_{\mathrm{i}}^{4}+\right.
$$

$$
\sum_{2} X_{i} X_{j} Y_{i} Y_{j} t_{\mathrm{i}}^{2} \mathrm{t}_{\mathrm{j}}^{2}+\sum_{2} \mathrm{X}_{\mathrm{i}}^{2} \mathrm{Y}_{\mathrm{i}} \mathrm{Y}_{\mathrm{j}} \mathrm{t}_{\mathrm{i}}^{3} \mathrm{t}_{\mathrm{j}}+\sum_{2} \mathrm{X}_{\mathrm{i}} \mathrm{X}_{\mathrm{j}} \mathrm{Y}_{\mathrm{j}}^{2} \mathrm{t}_{\mathrm{j}}^{3} \mathrm{t}_{\mathrm{i}}+
$$

$$
\left.\left.\sum_{3} \mathrm{X}_{\mathrm{i}} \mathrm{X}_{\mathrm{j}} \mathrm{Y}_{\mathrm{i}} \mathrm{Y}_{\mathrm{k}} \mathrm{t}_{\mathrm{i}}^{2} \mathrm{t}_{\mathrm{j}} \mathrm{t}_{\mathrm{k}}\right\}\right)-\theta_{1}^{2}
$$

$$
\begin{aligned}
& \mathrm{V}\left(\varepsilon_{1}\right)=\mathrm{E}\left(\varepsilon_{1}^{2}\right)=\frac{1}{\mathrm{n}^{2}}\left[(\mathrm{n}-1)^{2} \sum_{1} X_{i}^{2} Y_{i}^{2} p_{i}\right. \\
& +\left(n^{2}-2 n+2\right) \sum_{2} X_{i} X_{j} Y_{i} Y_{j} p_{i j} \\
& +\sum_{2} X_{i}^{2} Y_{j}^{2} p_{i j}-2(n-1) \sum_{2} Y_{i}^{2} X_{i} X_{j} p_{i j} \\
& +\sum_{3}^{2} \mathrm{Y}_{\mathrm{i}}^{2} \mathrm{X}_{\mathrm{j}} \mathrm{X}_{\mathrm{k}} \mathrm{p}_{\mathrm{ijk}}-2(\mathrm{n}-1) \sum_{2}^{2} \mathrm{X}_{\mathrm{i}}^{2} \mathrm{Y}_{\mathrm{i}} \mathrm{Y}_{\mathrm{j}} \mathrm{p}_{\mathrm{ij}} \\
& +\sum_{3}^{3} X_{k}^{2} Y_{i} Y_{j} p_{i j k} \\
& -2(\mathrm{n}-2) \sum_{3} \mathrm{X}_{\mathrm{i}} \mathrm{X}_{\mathrm{k}} \mathrm{Y}_{\mathrm{i}} \mathrm{Y}_{\mathrm{j}} \mathrm{p}_{\mathrm{ijk}} \\
& \left.+\sum_{4} X_{l} X_{k} Y_{i} Y_{j} \mathrm{p}_{\mathrm{ijkl}}\right]-\theta_{1}^{2}
\end{aligned}
$$

Now using the relations given in (1), $\mathrm{V}\left(\varepsilon_{1}\right)$ is given by

$$
\mathrm{V}\left(\varepsilon_{1}\right)=\sum_{1} X_{i}^{2} Y_{i}^{2} p_{i}+\sum_{2} X_{i} X_{j} Y_{i} Y_{j} p_{i j}+\frac{1}{n^{2}}\left\{\sum_{1} X_{i}^{2} Y_{i}^{2} p_{i}+\right.
$$ $\sum_{2} X_{i}^{2} Y_{j}^{2} \mathrm{p}_{\mathrm{ij}}+\sum_{3} \mathrm{Y}_{\mathrm{i}}^{2} \mathrm{X}_{\mathrm{j}} \mathrm{X}_{\mathrm{k}} \mathrm{p}_{\mathrm{ijk}}+2 \sum_{2} \mathrm{Y}_{\mathrm{i}}^{2} \mathrm{X}_{\mathrm{i}} \mathrm{X}_{\mathrm{j}} \mathrm{p}_{\mathrm{ij}}+$

$2 \sum_{2} X_{i}^{2} Y_{i} Y_{j} p_{i j}+\sum_{3} X_{k}^{2} Y_{i} Y_{j} p_{i j k}+4 \sum_{3} X_{i} X_{k} Y_{i} Y_{j} p_{i j k}+$
$\left.2 \sum_{2} X_{i} X_{j} Y_{i} Y_{j} \mathrm{p}_{\mathrm{ij}}+\sum_{4} \mathrm{X}_{\mathrm{l}} \mathrm{X}_{\mathrm{k}} \mathrm{Y}_{\mathrm{i}} \mathrm{Y}_{\mathrm{j}} \mathrm{p}_{\mathrm{ijk} \mathrm{l}}\right\}-\frac{2}{n}\left\{\sum_{1} \mathrm{X}_{\mathrm{i}}^{2} \mathrm{Y}_{\mathrm{i}}^{2} \mathrm{p}_{\mathrm{i}}+\right.$ $\sum_{2} X_{i} X_{j} Y_{i} Y_{j} \mathrm{p}_{\mathrm{ij}}+$
$\left.\sum_{2} X_{i}^{2} Y_{i} Y_{j} \mathrm{p}_{\mathrm{ij}}+\sum_{2} \mathrm{Y}_{\mathrm{i}}^{2} \mathrm{X}_{\mathrm{i}} \mathrm{X}_{\mathrm{j}} \mathrm{p}_{\mathrm{ij}}+\sum_{3} \mathrm{X}_{\mathrm{i}} \mathrm{X}_{\mathrm{j}} \mathrm{Y}_{\mathrm{i}} \mathrm{Y}_{\mathrm{k}} \mathrm{p}_{\mathrm{ijk}}\right\}-\theta_{1}^{2}$
Corollary 2: In case of PPSWOR sampling, $\mathrm{V}\left(\varepsilon_{2}\right)$ can be put as

$$
\begin{aligned}
& \quad \mathrm{V}\left(\varepsilon_{2}\right)=\mathrm{E}\left(\varepsilon_{2}^{2}\right) \\
& \quad=\frac{1}{\mathrm{n}^{2}}\left[(\mathrm{n}-1)^{2} \sum_{1} \mathrm{X}_{\mathrm{i}}^{4} \mathrm{p}_{\mathrm{i}}+\left(\mathrm{n}^{2}-2 \mathrm{n}+3\right) \sum_{2} \mathrm{X}_{\mathrm{i}}^{2} \mathrm{X}_{\mathrm{j}}^{2} \mathrm{p}_{\mathrm{ij}}-\right. \\
& 4(\mathrm{n}-1) \sum_{2} \mathrm{X}_{\mathrm{i}}^{3} \mathrm{X}_{\mathrm{j}} \mathrm{p}_{\mathrm{ij}}-2(\mathrm{n}-3) \sum_{3} \mathrm{X}_{\mathrm{i}}^{2} \mathrm{X}_{\mathrm{j}} \mathrm{X}_{\mathrm{k}} \mathrm{p}_{\mathrm{ijk}}+ \\
& \left.\sum_{4} \mathrm{X}_{\mathrm{i}} \mathrm{X}_{\mathrm{j}} \mathrm{X}_{\mathrm{k}} \mathrm{X}_{\mathrm{l}} \mathrm{p}_{\mathrm{ijkl}}\right]-\theta_{2}^{2}
\end{aligned}
$$

Lemma 3:

The covariance between ε_{1} and ε_{2} can be easily obtained as

$$
\begin{aligned}
& \operatorname{Cov}\left(\varepsilon_{1}, \varepsilon_{2}\right)=\frac{1}{n^{2}}\left[(n-1)^{2} \sum_{1} X_{i}^{3} Y_{i} p_{i}\right. \\
&+\left(n^{2}-2 n+3\right) \sum_{2} X_{i}^{2} X_{j} Y_{j} p_{i j}-(n \\
&-1) \sum_{2} X_{i}^{3} Y_{j} \mathrm{p}_{\mathrm{ij}}-(n-3) \sum_{3} X_{i}^{2} X_{j} Y_{k} \mathrm{p}_{\mathrm{ijk}} \\
&-3(n-1) \sum_{2} X_{i}^{2} X_{j} Y_{i} p_{i j} \\
&-(n-3) \sum_{3} X_{i} X_{j} X_{k} Y_{k} p_{i j k} \\
&\left.+\sum_{4} X_{i} X_{j} X_{k} Y_{l} p_{i j k l}\right]-\theta_{1} \theta_{2}
\end{aligned}
$$

On making use of the relations given in $(1), \operatorname{Cov}\left(\varepsilon_{1}, \varepsilon_{2}\right)$ can be put as

$$
\begin{aligned}
\operatorname{Cov}\left(\varepsilon_{1}, \varepsilon_{2}\right)=\sum_{1} & X_{i}^{3} Y_{i} p_{i}+\sum_{2} X_{i}^{2} X_{j} Y_{j} p_{i j} \\
& -\frac{1}{n}\left\{\sum_{1} X_{i}^{3} Y_{i} p_{i}+\sum_{2} X_{i}^{2} X_{j} Y_{j} p_{i j}\right. \\
& +\sum_{2}^{2} X_{i}^{3} Y_{j} p_{i j}+\sum_{3} X_{i}^{2} X_{j} Y_{k} p_{i j k} \\
& +\sum_{2}^{2} X_{i}^{2} X_{j} Y_{i} p_{i j}+\sum_{1} X_{i}^{3} Y_{i} p_{i} \\
& +\sum_{2}^{2} X_{i}^{2} X_{j} Y_{j} p_{i j}+2 \sum_{2} X_{i}^{2} X_{j} Y_{i} p_{i j} \\
& \left.+\sum_{3} X_{i} X_{j} X_{k} Y_{k} p_{i j k}\right\}
\end{aligned}
$$

$$
\begin{aligned}
-\frac{1}{n^{2}}\left\{\sum_{1} X_{i}^{3} Y_{j} p_{i j}\right. & +\sum_{1} X_{i}^{3} Y_{i} p_{i}+3 \sum_{2} X_{i}^{2} X_{j} Y_{j} p_{i j} \\
& +3 \sum_{2} X_{i}^{2} X_{j} Y_{i} p_{i j}+3 \sum_{3} X_{i}^{2} X_{j} Y_{k} p_{i j k} \\
& \left.+3 \sum_{3} X_{i} X_{j} X_{k} Y_{k} p_{i j k}+\sum_{4} X_{i} X_{j} X_{i} X_{l} p_{i j k l}\right\} \\
& -\theta_{1} \theta_{2}
\end{aligned}
$$

3. BIAS OF B_{Yx} :

$$
\begin{aligned}
& \operatorname{Bias}\left(\mathrm{b}_{Y X}\right)=E\left(\hat{b}_{Y X}\right)-\beta_{Y X} \\
& =E\left(\frac{\theta_{1}}{\theta_{2}}\right)-\beta_{Y X} \\
& =E\left(\frac{\theta_{1}+\varepsilon_{1}}{\theta_{2}+\varepsilon_{2}}\right)-\beta_{Y X} \\
& =\frac{\theta_{1}}{\theta_{2}} E\left(\frac{1+\frac{\varepsilon_{1}}{\theta_{1}}}{1+\frac{\varepsilon_{2}}{\theta_{2}}}\right)=\frac{\theta_{1}}{\theta_{2}} E\left[\left(1+\frac{\varepsilon_{1}}{\theta_{1}}\right)\left(1+\frac{\varepsilon_{2}}{\theta_{2}}\right)^{-1}\right]-\beta_{Y X}
\end{aligned}
$$

4. CONCLUSION

The authors have proposed the estimator and bias of regression coefficient. These all are derived logically and recommended to the researcher for an empirical investigation of the derived estimators and bias.

REFERENCES

[1] Gupta, J.P. \& Singh, R. (1989). Usual correlation coefficient in PPSWR sampling, Jour. Ind. Statist. Assoc., Vol.27, pp 13-16.
[2] Midzuno, H.(1950), An outline of the theory of sampling systems.Ann.Inst.Statist.Math., Vol. 1,pp 149-156.
[3] Sukhatme,P.V. \& Sukhatme, B.V.(1970). Sampling theory of surveys with applications.Asia Publishing House, India.

Now, it is assumed that the sample size is sufficiently large and expansion as a convergent series. $E\left(\hat{b}_{Y X}\right)$ will be

$$
E\left(\hat{b}_{Y X}\right)=\frac{\theta_{1}}{\theta_{2}}\left[1+\frac{E\left(\varepsilon_{1}\right)}{\theta_{1}}-\frac{E\left(\varepsilon_{2}\right)}{\theta_{2}}-\frac{E\left(\varepsilon_{1} \varepsilon_{2}\right)}{\theta_{1} \theta_{2}}+\frac{E\left(\varepsilon_{2}^{2}\right)}{\theta_{2}^{2}}\right]-\beta_{Y X}
$$

By substituting expressions from Lemma and Corollary, we can get $\operatorname{Bias}\left(\mathrm{b}_{Y X}\right)=E\left(\hat{b}_{Y X}\right)-\beta_{Y X}$.

